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Variable Importance and Uncertainty

Two dichotomies in uncertainty and explainable AI:
Do we explain global patterns or individual decisions?
Do we describe the model, or the world that generated it?

All combinations appropriate for different purposes.

This talk: global patterns about the world
Variable Importance for model an estimate for population
Need to define target of estimation
Quantify uncertainty associated with data generation and
model fitting.
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Conditional Simulation Importance

Data {Yi ,Xi ,Zi}ni=1 ∼ PY ,X ,Z

Model f̂ (x , z) to predict y with loss L(y , ŷ)

For “importance” of X , generate XC
i ∼ X |Zi indep of Yi and

V̂I
C

X =
1
n

n∑
i=1

L(Yi , f̂ (X
C
i ,Zi ))− L(Yi , f̂ (Xi ,Zi ))

increase in loss when using uninformative X .

Alternatives:
Permutation importance: X π

i ⊥ (Zi ,Yi )

LOCO: compare to (Yi ,Zi ) model
Note similar mechanism to SHAP
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The Estimand of VI

Assuming

f̂ (x , z) ≈ ŷ(x , z) = E (Y |X = x ,Z = z)

then V̂I
C

X targets

ΨC (P) = EL(Y , ŷ(XC ,Z ))− EL(Y , ŷ(X ,Z ))
= ΨC

0 (P)−Ψ(P)

treated as a functional of the data distribution.

Aim: de-bias V̂I
C

X and provide confidence intervals.

Framework: targeted learning
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A Targeted Learning Primer
Start with:

Data distribution P , and estimand Ψ(P), estimated P̂

Influence function ψ(x ;P) given by

ψ(x ;P) =
d

dϵ
Ψ((1 − ϵ)P + ϵδx)

Independent data with distribution Pn

Initialize P̃ = P̂ , iterate
1d maximization over η

η̃ = argmax
∑

log P̃(Xi )(1 + ηψ(Xi ; P̃))

Update P̃ = P̃(Xi )(1 + η̃ψ(Xi ; P̃))

Return Ψ(P̃)± 2sdPnψ(X ; P̃)/
√
n

5 / 16



Influence Functions

Key component in targeted learning satisfies

d

dϵ
Ψ(P + ϵ(Q − P)) =

∫
ψ(x ;P)d(Q − P)

for all Q.

Most Ψ can derived from

ψ(x ;P) =
d

dϵ
Ψ((1 − ϵ)P + ϵδx)

for each x .

Functional equivalent of gradient; expresses direction of greatest
sensitivity in Ψ.
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Justification

von Mises expansion:

Ψ(P̂)−Ψ(P) =
1
n

∑
pn

ψ(Xi ;P)−
1
n

∑
pn

ψ(Xi ; P̂)

+

∫
(ψ(X ;P)− ψ(x ; P̂))d(Pn − P) + R

√
n 1
n

∑
ψ(Xi ;P)

d→ N(0, σ2) = uncertainty quantification
1
n

∑
ψ(Xi ; P̃) = 0 after TL iteration

Cross-product = o(1/
√
n) if P̂ , Pn independent

R = o(1/
√
n) if |P̂ − P| = o(n−1/4)

When naively subtracting bias 1
n

∑
ψ(Xi ; P̂); CI’s do not account

for bias correction.
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Influence Functions for Variable Importance
Break into:

ψ0(X ,Y ,Z ) = (Y − ŷ(X ,Z ))

∫
L′(y , ŷ(X ,Z ))P(y |X ,Z )dy

+ L(Y , ŷ(X ,Z ))−Ψ0(P).

and

ψC
0 (X ,Y ,Z ) =

∫
L′(y , ŷ(X ,Z ))(Y − ŷ(X ,Z ))p(y |Z )dy

+

∫
L (y , ŷ(X ,Z )) p(y |Z )dy

−
∫

L (y , ŷ(x ,Z )) p(y |Z )p(x |Z )dxdy

+

∫
L (Y , ŷ(x ,Z )) p(x |Z )dx −ΨC

0 (P).
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Notes

In squared error case some terms drop out or cancel.
ψ0 evaluates to mean of squared error
removed by comparisons between features

ϕC0 requires estimates of p(y |Z ), p(x |Z ), obtained through
empirical distribution weighted by random forest kernel:

Initialize P(Y = Yi |Z ) = wi (z) from in-leaf proximity weight.
Monte-Carlo approximation to integrals in ψC

0 by weighted
bootstrap.
TL update = update wi (z).

Approximate update:

Yi = ϵ0f (Xi ,Zi ) + ϵ1ψ
C
0 (Xi ,Yi ,Zi ) + η

Shrinkage: use ϵ1/10 for numerical stability.
Cross validation: split into training/TL update over 10 folds.
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Algorithm
Require: {Yi ,Xi ,Zi} for i = 1, . . . , n, I1, I2, I3 such that I1 ∪ I2 ∪

I3 = {1, . . . , n} and I1 ∩ I2 ∩ I3 = ∅, initial estimates f̂I1 ,
P̂(x |z), P̂(y |z).

1: for each iteration t do
2: Sample

{
X ∗
j

}
j=1,...,m

from P̂(x |z), {Y ∗}k=1,...,m from P̂(y |z)
3: Calculate Ψ̂C

I2,0 = 1
|I2|

∑
i∈I2

(Yi − f̂ (XC
i ,Zi ))

2. and

ψ̂C
I2,0(Xi ,Yi ,Zi ; P̂) =

1
m

n∑
j=1

L(Yi , f̂ (X
∗
j ,Zi ))

− 1
m2

n∑
j=1

n∑
k=1

L(Y ∗
k , f̂ (X

∗,Zi )) +
1
m

n∑
k=1

L(Y ∗
k , f̂ (Xi ,Zi ))

4: Find ϵ̂ by regressing Yi on f (Xi ,Zi ) and ψC
0 (Xi ,Yi ,Zi ; P̂) using I2

5: Update P̂ = c(ϵ̂)(1 + ϵ̂ψ̂C
I2,0)P̂

6: Repeat the above iteration until convergence.

7: Return: Ψ̂(f̂I1 ,Pεkn ) and variance
√

1
n

∑
i∈I3

ψ̂C
I2,0 based on I3.
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Theory

1 Bounded number kn of updates.
2 von Mises expansion for Ψ
3 Consistency of f̂
4 Sample Splitting or
5 Donsker classes for f̂

Theorem 1

Assume that Assumptions 1-3 hold, and Assumption 4 or 5 hold.
Our final estimator Ψ̂(f̂I1 ,Pεknn

) is asymptotically linear and satisfies:

Ψ̂(f̂I1 ,Pεknn
)−Ψ(P∗) = PnψP∗ + oP(1/

√
n),

where ψ(P∗) is the efficient influence function.
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Why Conditional Permutation Importance?

Permutation importance IF:

ψπ
0 (X ,Y ,Z ) = (Y − ŷ(X ,Z ))

∫
L′(y , ŷ(X ,Z ))

P(X )P(y ,Z )

P(X ,Z )
dy

+

∫
L(Y , ŷ(x ′,Z ))P(x ′)dx ′

+

∫
L(y , ŷ(X , z))P(y , z)dydz − 2Ψπ

0 (P),

Ratio in first term can be large if (X ,Z ) associated.

LOCO importance uses 2 overlapping models, does not fit neatly
into TL.
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Experiments and Results

Repeated 240 times
1000 obs, 10-d X

vary x1,x2 correlation
Yi : just x1 (a), linear (b),
nonlinear (c).
Bootstrap, LOCO, Plugin,
TL

Bias

Coverage

CI Length
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Real World Demonstrations

Bike Share Wine Quality
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Extensions

Targeted learning approaches readily extendable to
Certifying feature orderings
Testing strength of interactions
UQ for partial dependence plots
Model distillation/approximations
Assessing fairness
Large-scale economic/social consequences

But: regularity requirements can restrict range of application.
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Discussion

Uncertainty in AI explanations needs care:
Relevant uncertainty depends on purpose.
Data uncertainty can be challenging.

Targeted learning provides a route to data uncertainty!

General framework but needs
estimand with sufficient regularity
often auxiliary quantities to evaluate influence function
some additional analysis
sufficient convergence of the ML method.

But many potential applications.
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