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Variable Importance and Uncertainty

Two dichotomies in uncertainty and explainable Al:
m Do we explain global patterns or individual decisions?
m Do we describe the model, or the world that generated it?

All combinations appropriate for different purposes.

This talk: global patterns about the world
m Variable Importance for model an estimate for population
m Need to define target of estimation

m Quantify uncertainty associated with data generation and
model fitting.
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Conditional Simulation Importance

m Data {Y;, X;, Z;}/_; ~ Py xz
m Model f(x,z) to predict y with loss L(y, 9)

For “importance” of X, generate X,-C ~ X|Z; indep of Y; and
—Cc 1< R R
Vie == LY, f(XE,Z)) = L(Y;, F( X, Zi
X n 2 ( 5 ( i )) ( ( ))

increase in loss when using uninformative X.
Alternatives:
m Permutation importance: X™ L (Z;, Y;)
m LOCO: compare to (Y;, Z;) model

Note similar mechanism to SHAP
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The Estimand of VI

Assuming
f(x,z) ~ y(x,z) = E(Y|X =x,Z = 2)
—C
then VI targets

VE(P) =EL(Y,9(XC, Z)) - EL(Y,9(X, 2))
= VG5 (P) - W(P)

treated as a functional of the data distribution.

—~C : :
Aim: de-bias VI and provide confidence intervals.

Framework: targeted learning
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A Targeted Learning Primer

Start with:
= Data distribution P, and estimand W(P), estimated P
m Influence function v (x; P) given by

V(x: P) = %\U((l — P+ ey

m Independent data with distribution P,
Initialize P = P, iterate

m 1d maximization over 7
fj = argmax y _ log P(X;)(1 + nv(Xi: P))

m Update P = P(X;)(1 + #io(X;; P))
Return W(P) + 2sdp o(X; P)/\/n
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Influence Functions
Key component in targeted learning satisfies
U@ P) = [v(xP)(@-P)
for all Q.

Most W can derived from
W(x; P) = dilll((l —€)P + €dx)
€
for each x.

Functional equivalent of gradient; expresses direction of greatest
sensitivity in W.
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Justification

von Mises expansion:
v(P) Zw (Xi: P) — Zw (X P)

+ / (0(X; P) — (x; P))d(Ps — P) + R

m /S u(Xi P) LN N(0,0?) = uncertainty quantification

m 1374p(Xi; P) = 0 after TL iteration

m Cross-product = o(1/+/n) if P, P, independent

m R=o0(1/y/n) if |P— P| = o(n~/*)
When naively subtracting bias 1 > 4(X;; P); CI's do not account
for bias correction.

7/16



Influence Functions for Variable Importance
Break into:

bo(X, Y, 2) = (Y - 9(X, 2)) / U(y, 9(X, 2))P(y|X, Z)dy
LY. 9(X. Z)) — Wo(P).

and

U5 (X, Y, 2) = [ L'(y,9(X. 2))(Y — 9(X, 2))p(y|Z)dy

+ [ L(y,9(X,2)) p(y|Z)dy

L(y,9(x,2)) p(y|Z)p(x|Z)dxdy

\\\\

+ [ L(Y,9(x,2)) p(x|Z)dx — WS (P).
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Notes

m In squared error case some terms drop out or cancel.

m 1)y evaluates to mean of squared error
m removed by comparisons between features

m ¢§ requires estimates of p(y|Z), p(x|Z), obtained through
empirical distribution weighted by random forest kernel:
m Initialize P(Y = Yi|Z) = w;(z) from in-leaf proximity weight.
m Monte-Carlo approximation to integrals in ¥)§ by weighted
bootstrap.
m TL update = update w;(z).

m Approximate update:
Yi = eof (Xi, Z)) + e1rt0§ (X, Vi, Z:) + 1

m Shrinkage: use €1/10 for numerical stability.

m Cross validation: split into training/TL update over 10 folds.
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Algorithm

Require: {Y;, X;,Z;} fori=1,...,n, I, h, 5 such that 1 U L U
= {1, e n} and L N b Nl =0, initial estimates ﬁl,
P(x|2), P(y2).
1: for each iteration t do
2: | Sample {Xj*}j: . from P(x|z), {Y*},_y _,, from P(y|2)

.....

3 Calculate U o = T Z:e/z( — F(XE,Z))~ and

. A1 f o
Dl o(Xi Y5, Zs Py = — > T L(Yi F(X7. )
j=1

S S A )+ S L R 20)
j=1 k=1 k=1
Find € by regressing Y; on f(X;, Z;) and 4§ (X, Yi, Z;; IS) using
Update P = c(é)(1+ €1/3/§’0)/3
Repeat the above iteration until convergence.

Return: W(f,, P..,) and variance /23", 1€ | based on k.

N oo R
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Theory

Bounded number k, of updates.
von Mises expansion for W
Consistency of f

Sample Splitting or

Donsker classes for f

Assume that Assumptions 1-3 hold, and Assumption 4 or 5 hold.
Our final estimator V(fy,, P_«,) is asymptotically linear and satisfies:

B(hy, o) — W(P) = Pap- + 0p(1//m),

where 1)(P*) is the efficient influence function.

11/16



Why Conditional Permutation Importance?

Permutation importance IF:

WX, Y, Z) = (Y - 9(X,2)) / L/(y,y(x,z))w

dy
+/L(Y,)7(X/az))P(X/)dX/
+/L(y,y(x,z))P(y,z)dydz —2W3(P),

Ratio in first term can be large if (X, Z) associated.

LOCO importance uses 2 overlapping models, does not fit neatly
into TL.
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Experiments and Results

Repeated 240 times Coverage

aam XGBoost mLp

m 1000 obs, 10-d X

m vary xj,xo correlation

m Y just x; (a), linear (b),
nonlinear (c).

m Bootstrap, LOCO, Plugin,
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Real World Demonstrations

Bike Share Wine Quality

importsnca sassacr
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Extensions

Targeted learning approaches readily extendable to

Certifying feature orderings
Testing strength of interactions
UQ for partial dependence plots
Model distillation/approximations
Assessing fairness

Large-scale economic/social consequences

But: regularity requirements can restrict range of application.
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Discussion

Uncertainty in Al explanations needs care:
m Relevant uncertainty depends on purpose.

m Data uncertainty can be challenging.

Targeted learning provides a route to data uncertainty!

General framework but needs
m estimand with sufficient regularity
m often auxiliary quantities to evaluate influence function
m some additional analysis
m sufficient convergence of the ML method.

But many potential applications.
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